
Overview, exercises and case study

Imputing big data from GWAS



What we’ll be covering today...
...we will discuss genome-wide aspects of genetic epidemiological studies focusing 
on meta-analyses of imputed data.  

Discuss basic theory behind GWAS, imputation and large-scale meta-analyses.

We will cite examples from recent work in Parkinson’s disease.

Share code, work on some examples.

If you have further questions after class feel free to email m.nalls.working@gmail.
com



Agenda:
1. Introduction to GWAS and basic history of GWAS
2. Exercise 1: data formatting and imputation
3. Meta-analysis and study design
4. Exercise 2: run analyses on study level
5. Current mega-analyses

!!!COFFEE BREAK / QUESTIONS!!!
6. Excercise 3: meta-analyses
7. Risk profiling
8. Functional inference
9. Heritability

10. Moving past basic disease GWAS
!!!MORE COFFEE /MORE  QUESTIONS!!!



An introduction to genome-wide approaches in genetic epidemiology…

The field of genome-wide genetic epidemiology studies arose out of advancing technology.

The technology available at a low cost beginning in the mid 2000’s allowed for cost effective genotyping of hundreds of 
thousands of single nucleotide polymorphism (SNPs).

SNPs are simple common variants with generally 2 possible options at any location in your genome.  Either AA,AB or BB at 
any particular location.

You have millions of SNPs in you genome, this is what makes us unique (unless you are a monozygotic twin).

These SNPs can have risk or protective effects, but for common SNPs that are variable across populations and individuals, 
the effects of these variants are small in complex traits or diseases for the most part.

Until companies like Illumina or Affymetrix developed genome-wide SNP assays, it took millions of dollars and considerable 
time/infrastructure to assay a few hundreds of thousands of variants in one sample.

Now you can genotype millions of SNPs for about $100 per sample.



An introduction to genome-wide approaches in genetic epidemiology…
Now we spend a little money and gain information on hundreds of thousands of SNPs for about 
$100/sample in the mid 2000’s
-The question arose of how could this wealth of data help with studies of disease genetics?
-Study design was a major issue as were statistical considerations and QC.
-Dealing with relatively common variants of small effect, not functional mutations that cause 
Mendelian diseases.

Therefore methods had to be developed to test these SNPs for associations with disease, 
treating each SNP as a separate exposure.

SIMPLE MODELING:
-Logistic regression
-Disease ~ SNP + covariates
-SNP parameter is the dosage of one allele (0,1 or 2 copies)
-Testing likelihood that particular allele at SNP has a significantly higher frequency in 

cases than controls, after using covariates to exclude effects of other factors from the 
calculations.  Essentially, we only want to see risk associated with the SNP! 

Replication a must!  
Early GWAS plagued by false positives for many, many reasons, most stemming from 
inadequate statistical power, less than thorough QC and small sample size



An introduction to genome-wide approaches in genetic epidemiology…
The premise is simple, hundreds of thousands of SNPs, one or a few of which may be associated 
with disease.

Here begins the a-hypothetical research paradigm:
-Test all available variants
-Look for small consistent effects, no-one expects huge disease risk effects for common SNPs
-Huge penalty for multiple testing

To reduce false positives after hundreds of thousands of tests, 
significance is declared P < 1e-7 instead of the 0.05 for a single statistical test

-Every SNP is tested under the assumption of a possible association with disease, not some prior 
biological or epidemiological knowledge of the SNP or the gene it resides in

So, the issue is statistical power.  Small effects and the prohibitive nature of $$$$ and assay time 
limited early GWAS from detecting or replicating many real association signals, primarily due to 
small sample sizes.



An introduction to genome-wide approaches in genetic epidemiology…

So what do you get?
Summary statistics for each tested SNP (per cohort analyzed).

These should be normally distributed, and the lambda value / qq plot is the most important 
metric of quality results 

From a great 
reference article
PMID:18349094



Early GWAS of Parkinson’s disease…

Parkinson disease
Age related; ~1% of the population > age 50
Neurological disease

Cardinal Clinical Features:
Resting tremor
Bradykinesia
Rigidity
Postural instability

Pathology:
Loss of neurons including SNpc
α-synuclein-, Ub- positive inclusions

Progressive course
Dementia in 30-50% of cases

Unknown environmental etiology
More common in males
Less common in smokers and coffee drinkers
Head trauma likely associated



Early GWAS of Parkinson’s disease…

Our lab was one of the early adopters/testers of genome-wide technologies, with a focus on 
what was at the time, a bleak field of Parkinson’s disease (PD) genetics.

ENVIRONMENT

GENETICS

© Gwinn K

Proposed etiology of PD circa 1997 - 2002



Early GWAS of Parkinson’s disease…

At this point, we only had mono-genic or Mendelian genetic risk factors for Parkinson’s disease related to primarily familial 
cases.

These were identified through classical linkage analyses and family studies.

Before the initial GWAS were started, there was only a hunch that common SNPs were involved in PD risk.
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Early GWAS of Parkinson’s disease…
GWAS was designed to target common variants for common diseases, outside of previous high 
and moderate risk studies focused on rare and relatively rare genetic variants

At the time, not logistically feasible to conduct population studies of rare SNPs



Early GWAS of Parkinson’s disease…

2009

2006

Our lab conducted the two first GWAS studies of Parkinson’s disease.

The 2006 study was severely underpowered and found nothing.

Data was expanded and combined with a series of German samples to increase the sample series to almost 2000 cases and  
4000 controls

The 2009 study used more refined methods and found MAPT and SNCA SNPs associated with PD after multiple test 
correction.

Imputation “guesses” genotypes based on more densely genotyped references, primary means of standardizing data 
genotyped on different arrays but also increases density and power for association studies.
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Exercise 1 begins now!
We are going to impute some data.

First lets make a directory in your data directory called ‘biowulfClass’

Next lets copy the following files from the /data/classes/nalls directory to your 
new data directory…
● cohortA
● cohortB
● ChunkChromo



Exercise 1.
Then lets run the following code from the ChunkChromo directory...
● tar -zxvf generic-ChunkChromosome-2011-08-05.tar.gz
● cd ./generic-ChunkChromosome
● make all

This will compile the ChunkChromosome utility in your directory.

Also run the following…
● module load nalls-class

This loads some additional utilities and should be loaded every time you want 
to repeat this workflow we will be going over today.



Exercise 1.

Directories ‘cohortA’ and ‘cohortB’...
● 2 cohorts of simulated alzheimer’s disease data
● In interest of time, only chromosome 19 not the whole 

genome
● cohort A - 400 samples, 1:1 case to control ratio, ~9500 

SNPs, PLINK format binary files
● cohort B - 500 damples, 1:1 case to control ratio, ~4700 

SNPs, PLINK binary files



Exercise 1.
Both cohort A and cohort B also contain directories called 
‘CustomImputationScripts’...
● The shell script ‘RunScripts.sh’ executes all 7 other 

scripts to go from formatting to imputed data in a few 
hours to a few days depending on the size of your 
dataset

● Steps 1-5 are formatting
● Step 6 calls the imputation and generates swarms
● impute-biowulf.pl contains imputaiton parameters



Exercise 1.
Lets take a look at the shell scripts…
● These are set up a shell scripts but could easily be run 

as swarms for steps 1-5 in sequence.
● $USER in the file paths specifies your data directory 

automatically.
● Steps 1-5 are just formatting, step 6 starts the real work
● Once you finished finding and replacing, lets discuss 

impute-biowulf.pl (in 5 minutes)



Exercise 1.
impute-biowulf.pl ← an overview
● Imputes from 1000 genomes VCF files as reference

● Default settings of Mach1 and miniMac from the Abecasis Lab at University 
of Michigan

● 1 core for mach1, 4 cores for miniMac

● Sequential runs of mach1 → miniMac

● logs swarm files and intermediate files in realtime



Exercise 1.
impute-biowulf.pl ← an overview (cont’d)
● lines 11 and 12 should have same path to reference VCF file directory
● lines 13 and 14 allow you to set size of genotyped SNP chunks and their 

overlap … this really effects processing time and numbers of files 
generated.

● lines 15 and 16 set the memory … both mach1 and miniMac “spike” 
memory on biowulf causing the occasional segmentation faults with larger 
datasets.

● replace lines 28 with 29 and 47 with 48 to run a whole genome
● Set up for autosomes … non-autosomal is quite involved and can be 

covered via email later.



Exercise 1.
Now it seems you are familiar with what is going on in the 
scripts and have changed the file paths and options 
appropriately.

Feel free to run the following 
cd /data/$USER/biowulfClass/cohortA/CustomImputationScripts/
sh RunScripts.sh > chunking.log
cd /data/$USER/biowulfClass/cohortB/CustomImputationScripts/
sh RunScripts.sh > chunking.log

Now lets take a 10 minute break for questions and help!



Current methods: the meta-analysis of GWAS data

By 2008-2010, methods for GWAS became more refined and false positives were less of a plague in the field, 
replication was easier.

Prices of GWAS arrays dropped slightly per sample, and the density of coverage increased

Principal components analyses were used to adjust for natural population substructure.

More rigorous QC of genotypes.

More rigorous QC of results (examining p-value distributions across genome via QQ plots etc.)

Slightly larger sample sizes

Although cost, time and sample availability were still prohibiting acquiring enough genotyped samples for 
any disease by any one group to make major gains in statistical power.

Difficult for individual sites/institutions to majorly move past early GWAS sample sizes and people were not 
finding many new results.



Current methods: the meta-analysis of GWAS data
The obvious solution to combine data across cohorts to increase power to detect new risk loci at minimal 
new cost (time and $$$).

Pooling data was not possible due to IRBs, sample privacy issues and the fact that different arrays genotyped 
slightly different SNPs.

This led to the necessity of genotype imputation!
-All common variation is generally correlated to nearby variation – linkage disequilibrium
-Dense genotyping in reference samples from HapMap (2.2 million SNPs) publicly available
-Use your genotyped SNPs to make the best guess at the genotype of nearby SNPs 

 -HapMap samples of similar continental ancestry as a reference to SNPs not in your study
-Once completed, all studies have larger standardized datasets for analysis

Imputation uses dosages, or non-integer genotypes that are weighted for uncertainty.

Allows for summary statistics from regression models to be combined across studies without sharing 
participant level data.

Standard meta-analytic techniques similar to clinical epidemiology.



To this end we formed a consortium of investigators with their own cohorts of PD cases and controls with GWAS data.

These cohorts included our cohort at NIA, as well as German, French, British, and Dutch collaborators aka The International 
Parkinson’s Disease Genomics Consortium (IPDGC).

Logistically challenging and time consuming but worth the effort.

We were early adopters of the preliminary 1000 Genomes data (haplotypes) to use as our reference for imputation.
-Over 7 million SNPs from genome-wide sequencing in a number of European ancestry populations from around the 

world that is publicly available
-Massive standardized datasets
-Drafting of a standardized analysis plan for cohort implementation to ensure compliance
-Increased statistical power due to more samples and denser genotyping 
-Fixed-effects meta-analysis of cohort level summary statistics from logistic regression
-Accounting for population substructure at the cohort and meta-analysis level to reduce   likelihood of false 

positives

Also, no samples available for replication, so we needed more genotyping!!!

Current methods: the meta-analysis of GWAS data



Current methods: the meta-analysis of GWAS data ← STUDY DESIGN

2 stages of analysis resulting in 2 papers 
(META1 and META2)

META1
• 2 stage design, built in replication (FAST)

– US, UK, French, German, Dutch and 
Icelandic cohorts, aka the IPDGC

• Imputed > 7 million SNPs  
• 5333 cases and 12019 controls
• Meta-analysis

– Replication via ImmunoChip
• 7053 cases and 9007 controls
• Targeted genotyping Loci at P < 

1E-4 in discovery phase (>200 
loci)

• META2
• Larger, more powerful than META1, but 

replication would be external (SLOW)

• Combined meta-analysis of discovery and 
replication series from META1

• Suggestive loci were built into the 
ImmunoChip for this reason

• Validate new loci with external 
collaborators

 



Current methods: the meta-analysis of GWAS data

Initial META1 results from a genome-wide prospective



Current methods: the meta-analysis of GWAS data
Results from META1

•11 genome-wide significant loci, confirming 4 previously implicated loci (blue) and 5 novel (red)
•All replicated successfully



Current methods: the meta-analysis of GWAS data

META1 was successful in identifying multiple new loci and replicating these definitively.

As part of study design, suggestive but not significant loci from the discovery phase of META1 were built into the replication 
array since there was “room leftover” on the array.

-These sub-significant loci are the orange regions on the “Manhattan plot”

Using identical meta-analysis techniques, replication and discovery phase samples were combined for overlapping SNPs.
-12,386 PD cases and 21,026 controls in total

Although we had officially burnt through all our available samples to replicate anything we found, so new collaborators 
must be sought out (Do et al., 23&Me)

-Offered back to back publications in the same journal as a joint submission if both groups exchanged summary 
statistics for competing papers since they had no replication samples 

Essentially META1 and META2 are 2 papers for the price of 1. 



Stage 1 Stage 2 Stage 1+2 Do et al

SNP Chrom Gene(s) OR (95%CI) P OR (95%CI) P P 
OR (95%

CI)
P

rs708723 1q32 RAB7L1/PARK16 0.905 (0.862-0.95) 6.68x10-5 0.863 (0.824-

0.905)
9.47x10-10 1.00x10-12 0.758 (0.65-

0.88)
2.12x10-6

rs34016896 3q26 NMD3 1.14 (1.09-1.2) 3.00x10-7 1.08 (1.02-1.14) 0.00399 1.81x10-8 1.002 (0.95-

1.06)
0.954

rs6812193 4q21 STBD1
0.886 (0.843-

0.932)
2.52x10-6 0.906 (0.864-

0.95)
5.29x10-5 7.46x10-10 0.839 (0.79-

0.89)
7.55x10-10

rs156429 7p15 GPNMB
0.894 (0.849-

0.942)
2.15x10-5 0.893 (0.852-

0.937)
3.86x10-6 3.27x10-10 0.901 (0.85-

0.95)
0.000193

rs591323 8p22 FGF20
0.884 (0.836-

0.935)
1.59x10-5 0.875 (0.83-

0.923)
8.49Ex10-7 7.45x10-11 0.932 (0.88-

0.99)
0.023

chr8:89442157 8q21 MMP16 1.38 (1.21-1.57) 1.10x10-6 1.29 (1.12-1.49) 0.000451 2.26x10-9 0.969 (0.86-

1.09)
0.589

rs4889603 16p11 STXB1 1.12 (1.06-1.18) 4.13x10-5 1.15 (1.1-1.21) 8.21x10-9 2.66x10-12 1.070 (1.01-

1.13)
0.014

•7 genome-wide significant loci, confirming 3 implicated loci (blue) and 4 novel (red)
•5 independently replicated (MMP16 and NMD3 problematic)

Current methods: the meta-analysis of GWAS data
Results from META2



Current methods: the meta-analysis of GWAS data
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Exercise 2.
Your data may have finished imputing but likely it did not.

Anyways, it would be good to download the directory ’imputedData’ into your 
working directory ‘biowulfClass’

ImputedData contains the following:
2 directories one for cohortA one for cohortB
Within each subdirectory is all you will need to run cohort level analyses.  
These include *.dose, *.info, *.ped and *.dat files



Exercise 2.
Within ./imputedData, we have the following for each cohort:
● *.dose and *.info files (3 for the more densely genotyped cohortA, only 1 

for cohortB). These are the main output of the pipeline we ran in Exercise1.
● *.dose is the dosages of alleles per SNP estimated using the 1000 

genomes reference data.
● *.info is the quality control output from miniMac detailing alleles, 

frequencies and imputation qualities.
● *.ped is the phenotype info for mach2dat, which we will use to run logistic 

regression models.  This includes affection status and two PCA derived 
covariates.  Note, these are genome-wide covariates, not specific to this 
chromosome.

● *.dat denotes contents of the *.ped file 



Exercise 2.
Lets get started with the regression modeling…

cd to /data/$USER/biowulfClass/imputedData
swarm -f mach2dat.swarm -g 85 --module nalls-class --R gpfs

What this will do is run regressions for each chunk under the following model:
Alz ~ SNP[i..j] + C1 + C2

Where each SNP dosage is tested individually for an association with Alzheimer 
status while controlling for population structure (covariates C1 and C2).

This swarm should take 5-10 minutes.  So lets handle some questions now.



Exercise 2.
Your swarm should have finished running by now.  If not, please download the 
appropriate results files from the ‘regressionResults’ directory in the class’ 
folder, place this in a directory called biowulfClass on your local machine.

Everything from here on out will be able to be done on a local machine just as it 
would on a single cluster node.

Right now you should have 3 *.results files for cohort A and 1 for cohort B, each 
corresponding to the chunks.

You can use head -100 *.results to check logs, also use tail * results to check 
that everything completed running.



Exercise 2.

Now lets begin extracting and filtering data.
We will pull data based on the phenotype 
keyword ‘Alz’ and aggregate across all chunks.  

This will be the first step from going from cohort 
level summary stats to meta-analysis results.



cd ./imputedData/cohortA
cat *.results | grep -w ‘Alz’ | grep ',' | grep -v ']' | grep -w -v 'NA' | sed -e 's/I,I/ I,
I/g' -e 's/R,D/ R,D/g' -e 's/D,R/ D,R/g' -e 's/I,R/ I,R/g' -e 's/R,I/ R,I/g' > ..
/rawResultsCohortA.txt
cd ../
cd ./imputedData/cohortB
cat *.results | grep -w ‘Alz’ | grep ',' | grep -v ']' | grep -w -v 'NA' | sed -e 's/I,I/ I,
I/g' -e 's/R,D/ R,D/g' -e 's/D,R/ D,R/g' -e 's/I,R/ I,R/g' -e 's/R,I/ R,I/g' > ..
/rawResultsCohortB.txt

This is contained in the shell script ExtractData.sh and can be run on genome-
wide scale!  

Run this from ./biowulfClass/imputedData on your local machine

Exercise 2.



Exercise 2.

What ExtractResults.sh does…
1. concatenates all chunked results per cohort
2. pulls results for trait of interest (you can analyze more than 1 trait at a time, 

longest ‘time thief’ is loading data)
3. removes monomorphic variants
4. removes poor model fit variants
5. reformats spacing to deal with some variant naming issues
6. splits alleles (column 3 is now column 3 and 4)

After this, results are ready for some quick QC before 
meta-analyses begin.



Excercise 2.
The R-script ‘formatResults.R’ is very basic and will do the following minimal 
QC for your cohorts.  
1. attach headers to data
2. filter based on imputation quality
3. filter based on minor allele frequency
4. filter based on impossible effect estimates
There are any number of utilities/programs/packages out there that will do 
similar.
For this dataset, formatting the results should take only a minute or so.
Lets take a few minutes to open formatResults.R and go over the contents.



Excercise 2.
Now, run R CMD BATCH formatResults.R from your /imputedData directory 
and check the log.

At this point we have two results sets that have undergone basic formatting and 
QC.  One for Cohort A and one for Cohort B.

In large consortia, usually these analysis, QC and formatting will be outlined for 
study level analysts by consortia guidelines and analysis plans.

Next step, meta-analysis using METAL - a meta-analysis package also from the 
Abecasis Lab at University of Michigan.  

But first, lets go over MEGA-analyses.



Current mega-analyses

The current lack of funding for more samples but the desire to find more risk loci have spawned a trend towards “mega-
analyses”.

In a mega-analyses, formerly competing groups combine samples using meta-analyses of summary statistics as before, but 
on an even larger scale.

Similar cross study harmonization must occur.
-Uniform analysis plans
-Identical statistical models
-Compatible imputation procedures
-Data transfer, storage and management issues

Currently, all NINDS funded groups interested in PD GWAS are conducting a mega-analysis for all samples with genome-
wide data.

We have employed an identical strategy as set forth in META1 and META2.

We have designed a new replication array with sub-significant associations tagged on the replciation array (NeuroX, more 
on that later) in addition to  SNPs necessary to replicate the mega-analysis

-This will be essentially META3 and META4
-Strategies for replication of META4 will be “interesting”



Current mega-analyses

Basic premise
• Collaboration between competing groups to achieve largest possible meta-analysis of PD GWAS data.
• Total sample size > 13K cases and > 82K controls
• Based on 1K Genomes Project haplotypes to successfully impute ~11 million SNPs
• Standard methods used to generate and combine summary statistics from GWAS across studies in a more conservative 

fixed-effects model
• Also tested liberal method of meta-analysis (RE2) in addition to the commonly used fixed effects model

Two methods of meta-analyses were utilized:

1. Fixed effects as per our previous work
-Conservative compared to method below, it is the common standard of GWAS

2. RE2 – Random effects modeling using the Han & Eskin method
-More “liberal” than fixed effects
-Good for large numbers of studies
-Flexible, as it allows for a few strong p-values to drive a SNP to significance in spite of weak results from smaller 

studies



Study Abbrev N Cases N Controls Total N
mean 
AAO

%Male 
Cases

%Male 
Controls

Markers
Markers 

Passing QC
λRaw

Ashkenazi AJ 268 178 446 TBD TBD TBD 11572500 7241832 1.006

deCODE DC 604 4916 5520 TBD TBD TBD 11572501 6698963 1.061

Dutch NL 744 2019 2763 55.3 63.60% 43.82% 11217965 7576956 1.061

France FR 985 1984 2969 48.9 58.80% 67.00% 11572501 7641834 0.854

Germany GER 667 937 1604 56.0 60.20% 52.00% 11210634 7486133 1.025

HIHG HIHG 574 619 1193 57.2 63.07% 34.57% 11914767 7613933 0.998

NGRC NGRC 1956 1982 3938 58.6 67.74% 38.70% 11914767 8163392 1.013

NIA NIA 937 1896 2833 55.9 39.50% 47.20% 11247278 7620408 1.035

PROGENI/GenePD PGPD 828 852 1680 62.1 59.90% 39.79% 11914767 7249203 1.009

UK UK 1705 5200 6905 65.8 56.70% 50.50% 11272513 7686314 1.034

23andMe TTM 4127 62037 66164 TBD 60.58% 59.48% 7840733 7729624 1.212

This high lambda for 23&Me was troubling, and 23&Me rationalized it as inflated due to 
their use of a 12:1 ratio of cases and controls, lambdas easily rescaled for case:control 
effect on inflation. 

Current mega-analyses

Sample Inventory for Mega-meta discovery



What you see is lots of hits, 39 conservative loci and 143 liberal loci.

The liberal model hits are a “super-set” of the conservative model, which is reassuring.

Initial results were very optimistic…



Re-analysis of the discovery phase
• One of the cohorts was forced to be split into 2 cohorts 

-Different chips for genotyping
-Sampling bias
-Possible imputation batch artifacts

• Analyses were then carried out identically as before on subsetted data

Discovery phase results
• The number of loci identified by the discovery phase was reduced to 26
• Technically 25 loci as one locus was primarily driven by UK data  (chr3:87520857)
• Loci were defined as regions of genome-wide significant hits within +/- 250kb of each other

- Defining loci in this way sets the stage for conditional analyses to identify secondary and tertiary hits at each locus
• Significant loci identified by both conservative and liberal models were identical

Conditional analyses
• For each significant locus, the core 9 studies re-analyzed all SNPs within the 25 significant and high quality loci, adjusting 

for the top SNP per locus
• Identical statistical models except the additional adjustment for SNPs
• In the first round of conditional analyses, 8 secondary semi-independent loci existed that passed locus specific 

correction for multiple testing

Current mega-analyses



Luckily all this analysis and re-analysis paid off and we finally published “META3” using replication from 
the NeuroX array we designed in house (grey loci failed replication)!



In total, we identified and replicated 6 new loci and confirmed an additional 22 suspected loci...



META4 is currently underway and we are busy looking for additional replication samples, but in 
summary we can conclude...

GENETICS
Environment?
More genes to 

find?

Etiology of PD, 2013-2014



Exercise 3.
Lets run METAL…
● Fixed-effects meta-analysis.  The standard for GWAS 

discovery efforts.
● Always quantify heterogeneity across studies.
● Always meta-analyze effect estimates, not p-values.
● Use genomic control to adjust for inflation when running 

genome-wide but never on loci or single chromosomes 
in general.

● Its also a bit faster than R.
● “Industry standard”



Exercise 3.
First, make sure the script ‘RunMetal.txt’ is copied to your /imputedData 
directory.

Lets now take a minute to go over the contents of the script and answer any 
questions.

Also, please copy your metal executable to the /imputedData directory

Then just run metal RunMetal.txt > Metal.log in the standard command line 
from the /imputedData directory.



Exercise 3.
Let's briefly take a minute to go over the log file and the additional descriptive 
file ‘METAANALYSIS1.TBL.info’.

The *.TBL.info file describes the contents of the columns in the actual meta-
analysis file.

The log file shows that you have a “hit” that breaks genome-wide significance 
(usually regarded as a p-vlaue < 5E-8).

Lets now investigate your actual meta-analysis results using the R-script 
‘PostProcess.R’ that can also be found in the /imptuedData directory.  You can 
run this using ‘R CMD BATCH PostProcess.R’. 

When this is finished in 2 minutes, lets go over the output.



Exercise 3.
Now you have “rediscovered” the APOE locus that is the best known risk factor 
for Alzheimer’s…

● You will only see genome-wide significant hits in Cohort A, because Cohort B’s genotyping did 
not have sufficient density to tag enough of the risk haplotype at this locus.  Although they do tag 
the very edges of the haplotype as evidenced in your list of “candidates”

● You have done what most large-scale GWAS consortia do in one morning, just on a limited 
scale and with less conference calls and paper work.

● You have learned some of the subtleties of this type of data analysis as well as received code 
that can be slightly modified prior to applying to your own data.

● You should be ready to begin your own analyses now building on this foundation!



Risk profiling
With META1 and META2 we were able to identify a total of 16 replicated loci in the span of 18 
months.  With META3 almost 2 years later we have increased to 28, and 30 if you include rare 
variants in LRRK2 and GBA (0.1-1% of cases).

Common SNPs and even some rare variants with low risk estimates don’t mean much by 
themselves to the average scientist.

We employed risk profiling to quantify cumulative risk attributable to all of these variants of 
interest.

Summing of the total number of known risk alleles per sample.

Scale risk allele counts by specific variant’s reported odds ratio
-SNPs don’t all have the same effect
-More realistic and specific model
-More appropriate than population attributable risk (PAR)  for SNPs of variable frequencies
-apply to cohort(s) not used in discovery



Risk profiling

Trend → a genetic risk profile score greater than 1 s.d. from the population mean, indicative of a roughly 34% increase in genetic risk score 
above the mean for controls, had a significantly higher risk of Parkinson's disease ( OR = 1.51, P = 2 × 10−16). 
Outliers → fifth quintile of genetic risk scores to the first quintile of genetic risk as a reference; the OR was 3.31 (P = 2 × 10−16). 

These OR estimates are larger in comparison to those in earlier publications and might be due to the finer-scale imputation in META3, as well 
as to the inclusion of additional loci and, to some degree, differing distributions of cumulative genetic risk scores across populations in the 
analysis



Risk profiling

Risk profiling, machine learning  and similar risk prediction is of high interest and a hot topic for the foreseeable 
future.
We have fit these model parameters from our cross-sectional GWAS data to the Michael J Fox Foundation’s 
PPMI study (http://www.ppmi-info.org/), with an almost 10% increase in predictive power compared to previous 
modeling effort (from an AUC or ~63% to 72%).  

http://www.ppmi-info.org/


Functional inferences from methylation and expression data

So at this point we have discovered a number of risk SNPs associated with PD
In general we discuss the most significant SNP in a region, we need to remember these are 
actually loci, anywhere from a handful to thousands of correlated proximal SNPs all associated 
with disease to some degree.

We should really think in 
terms of loci and not simply 
genes or SNPs!

And there is biology that we 
can try to understand within 
these loci!



Functional inferences from methylation and expression data
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Allows for inference of biological processes at risk loci.

Expression relates to activity at the locus.

Methylation relates to estimates of “regulation”.

We are interested in concordance between risk and/or one of these two factors for the 
same allele at the same SNP.



Functional inferences from methylation and expression data

The left column shows the concordance between 
meta-analysis effect estimates and QTL effect 
estimates for SNPs at five loci with significant QTL 
associations. 

The right column shows the position of 
significantly associated SNPs from the QTL 
analyses within every region of interest. 

Orange circles=expression assayed in the frontal. 
Red circles=expression assayed in the cerebellum. 
Purple circles=methylation assayed in the frontal.  
Blue circles=methylation in the cerebellum. 
Grey circles=not significant.



Now that we have identified all of these risk loci based on SNPs from GWAS studies, where does 
that leave us in terms of heritable risk.

Recent methods have been developed to estimate heritability in ostensibly outbred populations 
based on low levels of background “relatedness” within the population.

-mixed model
-maximum likelihood
-GCTA method (http://www.complextraitgenomics.com/software/gcta/)

We decided to compare genome-wide heritability versus heritability at GWAS identified loci 
across IPDGC cohorts

-estimate heritability
-meta-analyze estimates across cohorts (random-effects)
-identify heritability missed by GWAS (i.e. the difference between genome-wide and locus-
specific estimates of variance explained by SNPs)

Heritability of risk

http://www.complextraitgenomics.com/software/gcta/


Heritability of risk

In the simplest terms, GWAS 
identified loci only account for 
~3% of PD risk, but it is estimated 
that at least ~25% more of total 
PD risk is attributable to genetics. 



At this point we know linkage and GWAS methods are missing something.

Where we stand now…



Where we stand now…
• Cost drops in sequencing have allowed us to begin investigating rare but larger effect 

variants using a variety of technologies to chase this “missing heritability” of disease.
• Exome arrays are a particularly cost effective tool for this, although analytic methods are 

“under construction” but improving rapidly. 



The future direction…
Introducing NeuroX, exome sequencing / arrays and whole gnome sequencing 
The NeuroX array arose out of the need to custom genotype a multitude of markers for the replication of hits from the 
Mega-meta project.

It was almost as cheap to add custom content to an existing exome array as it was to build a custom array.

With the availability of cost effective custom content to supplement current exome arrays from Illumina, the idea basically 
presented itself as replication for META3 with free exome content.

1% of genome that is protein coding is focus!

We opted to utilize 30K bead types to add to the Illumina Exomev1.1 array to cover primarily Mega-meta replication (10K 
beadtypes) as well as other neurodegenerative diseases.

Full exome sequencing based variants standard to the Illumina exome array (242901 variants) and neurological and 
neurodegenerative disease focused content that may be added to other existing arrays (24706 variants). 

This array covers a majority of easily assay-able coding variation in the genome at a fraction of the price of sequence-based 
data with major attention to rare variants.

This will be a supplement to current exome sequencing projects underway

 



>

Coverage of genome by variants included on the NeuroX array. As a note, chromosome 23 is the X chromosome, 
24 is the Y chromosome, 25 is the pseudoautosomal XY region and 26 represents mitochondrial DNA. 

The future direction, a focus on rare variants…



The future direction…

Currently analyses focus on gene burden tests
-genes enriched for more rare variants in cases compared to controls
-a “crutch” for the low statistical power related to testing rare variants by themselves
-lower penalty for multiple testing based on ~20K genes instead of 200K single variants

Similar a-hypothetical paradigm as GWAS

Test all genes to see if the cumulative burden of rare variants for a gene is enriched in cases
-all variants below a certain minor allele frequency
-only coding variants

Tests include
-T1, an enrichment of variants below 1% minor allele frequency enriched in cases
-T5, an enrichment of variants below 5% minor allele frequency enriched in cases
-SKAT, sequence kernel association test which scores variant loadings per gene based on variance-components and 

can be applied to a variety of frequencies (bidirectional test)



The future direction…

Burden and single variant testing is underway in ~6K cases and 6K controls assayed on NeuroX

Modeling parameters for different burden tests are being fine-tuned
-weighting parameters based on annotation for predicted damaging effects and frequency
-variant classes included in model (all variants, nonsynonymous coding changes, loss of 

function, etc)
-frequency spectrum being analyzed

Analytic framework
-single variant and burden tests are stratified by ancestry (i.e. USA, UK, Germany, Greece or 
 France) then meta-analyzed
-all analyses adjusted for principal components derived from SNPs outside of known PD 

risk loci to account for population substructure and reduce likelihood of false positive 
indicated by lambda inflation

-pooled analyses when possible
-meta-analyses by cohort to assess heterogeneity



The future direction…

Proof of concept:
From T5 test including only non-
synonymous coding changes, GBA is 
one of the most significant associations 
as expected.  Published associations 
from targeted sequencing studies have 
show the same results and similar 
effect estimates ... In addition to ~20 
new candidate genes for further study.   
This will supplement exome sequence 
data being aggregated at the moment.
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Congratulations!
Thanks for your participation.  I’m happy to discuss this subject matter anytime, 
please feel free to email m.nalls.working@gmail.com.

Also, if you or someone you know is interested in a 
fellowship in analytics / biostats / genetic epidemiology, 

please let me know via email because I’m hiring!

mailto:m.nalls.working@gmail.com

